17template <
size_t state_d,
size_t measure_d,
size_t control_d>
20#define mtx_t Eigen::Matrix
70 (
K *
R *
K.transpose());
Template-based Kalman filter implementation.
Definition kalman.h:19
mtx_t< double, measure_d, 1 > Yk_k
updated (current) state
Definition kalman.h:38
mtx_t< double, state_d, 1 > Xk_km1
actual measured values vector
Definition kalman.h:32
void estimate()
Definition kalman.h:47
mtx_t< double, state_d, state_d > I
updated estimate covariance
Definition kalman.h:42
mtx_t< double, measure_d, measure_d > Sk
measurement innovation
Definition kalman.h:35
void correct()
Definition kalman.h:56
mtx_t< double, state_d, 1 > Xk_k
Kalman gain.
Definition kalman.h:37
mtx_t< double, state_d, state_d > Q
control matrix
Definition kalman.h:26
mtx_t< double, measure_d, state_d > H
state transition model
Definition kalman.h:24
mtx_t< double, control_d, 1 > Uk
observation noise covariance
Definition kalman.h:28
mtx_t< double, state_d, state_d > Pk_k
post fit residual
Definition kalman.h:39
mtx_t< double, measure_d, 1 > Yk
predicted estimate covariance
Definition kalman.h:34
mtx_t< double, state_d, state_d > F
Definition kalman.h:23
mtx_t< double, state_d, control_d > B
observation model
Definition kalman.h:25
mtx_t< double, state_d, state_d > Pk_km1
predicted state estimate
Definition kalman.h:33
kalman_filter()
Definition kalman.h:43
mtx_t< double, measure_d, measure_d > R
process noise covariance
Definition kalman.h:27
mtx_t< double, state_d, measure_d > K
innovation covariance
Definition kalman.h:36
mtx_t< double, measure_d, 1 > Zk
control vector
Definition kalman.h:29
#define mtx_t
Definition kalman.h:20